Lightening the burden of high pressure for hydrogen-powered vehicles

Fuel cell electric vehicles (FCEV), powered by hydrogen, beat battery-powered cars in several dimensions. Fueled up in only a few minutes, they have a longer range and still feature all performance benefits of the electric powertrain. But the technology is still young and has to master some challenges. From a composites’ point of view, the significant amount of fibers needed for the hydrogen storage vessel, is a particular one. And it’s one that was taken into the focus of Cevotec engineers who designed a solution to save 20% of time, material and cost to build composites-based high-pressure vessels.

“The automotive industry has invested billions in fuel cell electric vehicles, but only very few cars are on our streets yet. One of the larger challenges is to efficiently and safely store hydrogen in the vehicle”, says Thorsten Groene, CEO of Munich-based Fiber Patch Placement specialist Cevotec. “There is working pressure of up to 700 bar in the tanks, which translate into approx. 10 kg of carbon fiber for 1 kg hydrogen storage – a very high ratio.”

Obviously, manufacturers are interested in using less of the expensive fibers to reduce the vessel’s weight & cost. “Wrapping endless fibers around the liner is best for the cylindrical part”, says Dr. Neven Majic, Executive VP of Cevotec. “But filament winding at the domes means redundant material on the cylindrical part – which translates into excess weight and cost of the final product.” Cevotec’s solution is to apply carbon fiber patches in the dome areas, using the same material, just in patch form. “The patches are designed to exactly cover the areas causing problems in filament winding,”, explains Majic. With patch reinforcements on the liner domes in a first step, the patched liners are passed over to the filament winding process, which subsequently needs less material and production time for the dome areas.

“The investment in patch technology pays off from the first day of production”, reports Groene. One FPP system can reinforce vessels for several winding machines. Manufacturers can realize at least 20% material and cycle time savings. “When manufacturers combine winding and patch placement in series production, the FPP capital investment amortizes within the first year already. It’s a fairly simple calculation that we can present our interested customers.”

By consequently applying Fiber Patch Placement technology to today’s composite manufacturing challenges, Cevotec supports the advancement of composites for a green mobility revolution. Material efficiency and cost savings of 20% – 60% are typical benefits for manufacturers switching from manual lay-up to Fiber Patch Placement technology.

About Cevotec:

Cevotec enables manufacturers to build complex fiber composites in high volume and quality – by smart process automation based on Fiber Patch Placement technology. With SAMBA Series, Cevotec offers a customizable fiber lay-up automation platform for challenging 3D geometries and multi-material laminates with complex fiber orientation. ARTIST STUDIO is the associated CAE software for generating patch-based fiber laminates and automated robot programming. Along with development services that include FE-based modeling and simulation, Cevotec offers the entire process chain from digital design to final fiber product.

This article has been published online on:

Download center